US009432384B2

a2 United States Patent

Huang et al.

US 9,432,384 B2
Aug. 30, 2016

(10) Patent No.:
(45) Date of Patent:

(54) METHODS AND NODES FOR VERIFICATION (56) References Cited
OF DATA
U.S. PATENT DOCUMENTS
(71) Applicant: Telefonaktiebolaget I. M Ericsson
(publ), Stockholm (SE) 2008/0195865 Al* 82008 Nikander HO4L 2%0/41147%
(72) Inventors: Vincent Huang, Sollentuna (SE); Yi 2008/0262798 AL* 1072008 Kim ..o H047Log/71/ éé
Cheng, Sundbyberg (SE); Andras .
Méhes, Sundbyberg (SE); Mats (Continued)
Nislund, Bromma (SE) OTHER PUBLICATIONS
(73) Assignee: TELEFONAKTIEBOLAGET L M PCT Notification of Transmittal of the International Search Report
ERICSSON, Stockholm (SE) and the Written Opinion of the International Searching Authority or
(*) Notice: Subject to any disclaimer, the term of this ghsel 2]3;:01;\1;21&021; fzog lémemational application No. PCT/SE2012/
patent is extended or adjusted under 35 POV 28 ' .
U.S.C. 154(b) by 0 days. (Continued)
(21) Appl. No.: 14/441,880 Primary Examiner — Morshed Mehedi
. (74) Attorney, Agent, or Firm — Patents on Demand, P.A.;
(22) PCT Filed: Nov. 12,2012 Brian K. Buchheit; Scott M. Garrett
(86) PCT No.: PCT/SE2012/051233 (57) ABSTRACT
§ 371 (e)(1), A first data handling node (304) is configured to verify data
(2) Date: May 11, 2015 received in a data distribution network with multiple data
(87) PCT Pub.No.. WO2014/074041 handling nodes fqrming a .distribut.ion path of a network
topology, by obtaining tag information from a hash server
PCT Pub. Date: May 15, 2014 (306). The first data handling node (304) receives data (D3)
. L and a hash tag (H3) from a second data handling node (302).
(65) Prior Publication Data The received data (D3) and hash tag (H3) have been generated
US 2015/0288704 Al Oct. 8, 2015 by the second node based on a previous hash tag (H1, H2)
generated by a preceding third data handling node (3004,
(51) Imt.CL 3005). The third node has delivered data (D1, D2) to the
GO6F 21/00 (2013.01) second node, and the received data (D3) has been generated
HO4L 29/06 (2006.01) by the second node based on the data (D1, D2) delivered by
(Continued) the third .data handling node. The first data handling.node
(304) verifies the received data (D3) based on the tag infor-
(52) US.ClL mation from the hash server, which indicates whether the
CPC ., HO4L 63/126 (2013.01); GOGF 21/64 received hash tag (H3) corresponds to a “valid hash tag” (Hx)
(2013.01); HO4L 9/3236 (2013.01); HO4L which is calculated by applying a predefined hash algorithm
63/08 (2013.01); HO4L 63/123 (2013.01); HO4L on the previous hash tag (H1, H2). When the received tag
2209/38 (2013.01) corresponds to the valid tag, the data is verified as trustworthy
(58) Field of Classification Search and not faked or manipulated.

CPC HO4L 63/126
See application file for complete search history.

Hash Setver

16 Claims, 6 Drawing Sheets

3ila
Register H1

31b
3008 Register H2

Data 302
Handiing

3:10 Obtain
tag info

3:6 Register
H3

304

Node 3) 324 D1,

HID),
AUKLHD

Data
Handling
Node (2)

3006

Data
Handling
Node (1)

3:15D4,
H4, A4

3:8 3,H3,A3
3022

[

Data
Handling
Node (3)

3:26 D2,
HX(D2),
A2(K2,H2)

333 Verify D1, D2,
authenticate HI, H2
3:4 Generate D3(D1,02)
3:5 Generate FI3(H1,H2)
347 Calculate A3(K3,H3,D3)

L7

3:9 Authenticate H3
3:11 Calculate Hx
3:12 Verify D3

ifHx=H3
3:13 Generate D4
3:14 Generate
Ha, A4

308

H

Data
Handling
Node (4)

US 9,432,384 B2
Page 2

(51) Imt.CL
GO6F 21/64 (2013.01)
HO4L 9/32 (2006.01)
(56) References Cited

2009/0044013
2010/0098090

2010/0290617
2011/0286596

2012/0057702

U.S. PATENT DOCUMENTS

Al* 2/2009

Al* 4/2010

Al
Al*

11/2010
112011

Al* 3/2012

GO06Q 10/107

2012/0324229 Al* 12/2012 Buldas HO4L 9/321
713/176

OTHER PUBLICATIONS

“Secure Hierarchical In-Network Aggregation in Sensor Networks”
by Chan et al., 2006.

“Applying Secure Data Aggregation techniques for a Structure and
Density Independent Group Based Key Management Protocol” by
Kifayat et al., 2007.

713/170
H043L7g;28§ EPO extended Furopean search report for Application No. / U.S.
Pat. No. 12888012.7-1870/ 2918057 PCT/SE2012051233, Oct. 21,
HO4L 9/0637 2015
380/268
HOAL 9/3242
380/255 * cited by examiner

U.S. Patent

Aug. 30, 2016 Sheet 1 of 6

US 9,432,384 B2

SN SN
D 102 D 104 106
D H .o LW N ['W
D D
SN - | PN PN RN
D * I D,.~
N =

SN

Fig. 1 (Prior art)

200
\

Receive data and hash tag from 2™ node

202 y
™~ Obtain tag information for verification from hash server

204
]

Y

Verify received data based on tag information indicating
whether received hash tag corresponds to valid hash tag
206 J, __

\-’ Using received data when verified according to valid hash tag |

...

U.S. Patent Aug. 30, 2016 Sheet 2 of 6 US 9,432,384 B2

306
Hash Server B

RH
Register HI Reg?,’;tleb 0 3:10 Objtain
15ter I tag info
300a 3:6 Register g
LW H3
Data 302 304
Handling H H
Nod
ode (3) 3:2a Dl, Data 3:8 D3,H3,A3 Data 1-15 D4,
HID1), Handling |————*| Handling | H4 A4
ALKI1HI) Node (2) | 3024 Node (1) +-----
300b <"
Dat 3:3 Verify D1, D2, 3:9 Authenticate H3
- 3115} 3:2b D2, authenticate H1, 2 3:11 Caloulate Hx
ancling | rp(p2), .4 Generaf 5) ,
Node (3) A2(K2’H2) 3:4 Generate Dg([)I ,].)...,) 3:12 ernfy D3

3:5 Generate H3(H1,H2) if Flx = [13
3:7 Calculate A3(K3,H3,D3) 3:13 Generate D4
3:14 Generate
H4, A4

308

L,\

Data
Handling |«----- '
Node (4)

Fig. 3

U.S. Patent Aug. 30, 2016 Sheet 3 of 6 US 9,432,384 B2

400
S~ Receive data, hash tag and auth value from 2 node

402 Y
S

Authenticate hash tag by using received auth value

404
S~

Fetch previous hash tags from hash server

406 M
~— Calculate valid hash tag from previous hash tags

Corresponds to
received tag?

410
L /[

l Discard received data
Yes

1 Generate new data based on received data

414 l
™| Generate new hash tag based on received hash tag

41 6 Y
| Calculate new auth value based on new hash tag, key and new data

418 Y
] Send new data, new hash tag and new auth value to 4th node

420 L
~~J Send new hash tag to hash server for registration

Fig. 4

U.S. Patent Aug. 30, 2016 Sheet 4 of 6 US 9,432,384 B2
0 D arapata |1
Handling | {{ ™~ ™
Node |+ s ™
L IDLD2... N
L HLH? . HI,H2...
E i \\ *
Yvy
500 2nd Data 506 Hash Server
~._| Handling ~ (HLH2..)
Node \
D3,H3,A3 Tag info
500 ™~
1% Data Handling Node 500b
500a 3 v /[
i Receiving Unit Obtaining Unit
l |
200 l L2 e
N Verifying Unit » Using Unit |___1__T_- L
H3=Hx? WA |
M \\\\ ;' e E
1 p
1 :
A i
“m 5
508 f
~__ 4th Data
Handling
Node

Fig. 5

US 9,432,384 B2

U.S. Patent Aug. 30, 2016 Sheet 5 of 6
600
Receive hash tags for registration from nodes in distribution path
602 |
\~ Determine topology of distribution path
604 l
“~ Receive request for tag information from requesting node
Y
606 . .)
~_ Determine tag information based on hash
tags originating from preceding nodes
608 ¥
~~—| Return tag information to requesting nodc
Fig. 6
700 ™~
Hash Server M
P 1"
L....]
et 1OZIC Unit
700a ’_—J l a 700d
~ ,
‘i 1 Recelvmg Unit { 254 Receiving Unit
R » ¥, Yo
HY, /T
PO, JH2, (H3 N HA S s, ‘
S/ po PO \PO W PO Req Tag
,/’ .vl, ! N N . leO
i\]] T — ‘ 70
N3 o N4 - N5 o N6 | .
N2 /HE ~* H ~
H3(H1,H2) H4(H3) HS(H4)
Fig. 7

U.S. Patent Aug. 30, 2016 Sheet 6 of 6 US 9,432,384 B2

800
| Receive data and hash tag from preceding node

802
~ Generate new data based on the received data
804 ‘
L Generate new hash tag based on the received hash tag
806 i
“~{ Deliver new data and new hash tag to subsequent node
808 y
™~ Send new hash tag to hash server for registration
Fig. 8
902
Ve - Vs 904
Preceding AN Subsequent
Node Data Handling Node Node
Vs 900a Ve 900d T
.| Receiving Unit D3 Sending Unit
D2, H2 ‘ D3, H3
D2 H3| _ 900c 906
900b ! L= 4
] ¥ Gene.rating H2™ ond Generating Hash
Unit Unit H3 Server
Fig. 9

1000 ~
Fig. 10

US 9,432,384 B2

1
METHODS AND NODES FOR VERIFICATION
OF DATA

PRIORITY

This nonprovisional application is a U.S. National Stage
Filing under 35 U.S.C. §371 of International Patent Applica-
tion Ser. No. PCT/SE2012/051233, filed Nov. 12, 2012, and
entitled “METHODS AND NODES FOR VERIFICATION
OF DATA”

TECHNICAL FIELD

The present disclosure relates generally to data handling
nodes and methods therein, and a hash server and a method
therein, for verifying and enabling verification of data in a
data distribution network.

BACKGROUND

In the field of telecommunication, data distribution net-
works comprising various data generating nodes, such as
sensors and devices, are sometimes employed to distribute
often huge amounts of data in order to provide knowledge
about different locations and environments to parties needing
or wanting such sensor generated information. In this context,
the term “sensors” is often used to denote any entities capable
of registering or measuring some measurable metric or quan-
tity, and of communicating the results, e.g. at regular inter-
vals, by sending source data through the network. “Source
data” is thus original data that has basically not been pro-
cessed.

The source data may for example refer to some physical
measure such as temperature or pressure for surveillance of
an object or a space, or to some counted metric such as the
number of passing cars for example. This source data can then
be processed by data processing nodes in a data distribution
network when having received the source data, to produce
new data derived from the source data, e.g. by performing
various calculations and compilations. An illustrative
example could be to receive multiple temperature measure-
ments at regular intervals from one or more sensors and then
calculating an average temperature for a certain period which
is then delivered to a surveillance centre.

It should further be noted that source data in this context is
not limited to measurements of “tangible” physical quanti-
ties, but could also relate to more abstract information, such
as e.g. market or business data, news information, software,
media or content such as audio/video/games, etc. For
example, in a software development process, data relating to
software components may be generated by a plurality of
source nodes, which data may then be combined and/or
refined, and re-distributed by subsequent data processing
nodes. Source data may further be generated and distributed
by devices having some operational function. For example, a
device may work as an actuator for mechanically operating a
moving part such as a door, valve, gate, plunge, ram, etc. In
that case, the generated source data may refer to some opera-
tional feature of the device, e.g. the number of times it has
executed a task.

Inthe following description, the term “source node” will be
used to represent any devices, sensors, detectors, actuators
and other entities capable of generating and communicating
source data, while a “data processing node” is a node that in
some way processes received data, which could comprise
source data and/or previously processed data, to generate new
data for further distribution through the network. The new

10

15

20

25

30

35

40

45

50

55

60

65

2

data may be dependent on local data as well which has been
generated and/or previously stored by the data processing
node.

FIG. 1 illustrates how data can propagate through a data
distribution network where source nodes denoted “SN” gen-
erate and send source data which is received by data process-
ing nodes 102, 104 denoted “PN”. In this example, a data
processing node 102 receives source data D from three source
nodes 100qa. The data processing node 102 then processes the
received source data, and possibly also local data L, in order
to generate some new data D' which is thus derived from the
received source data D and from local data L if used. The data
processing node 102 sends the new data D' to another data
processing node 104 which performs more processing of the
received data D' and possibly also of source data D received
from other source nodes 1004, as indicated by dashed lines in
the figure, and/or of processed data from other data process-
ing nodes, not shown, and/or of its own local data, depending
on configuration. A data processing node 102 may also act as
source node itself by generating its own local source data
which may be used as well for generating new data.

In this way, the data processing node 104 generates further
new data D" which is thus derived both from the source data
D and the previously processed data D'. In this example, the
data processing node 104 delivers the resulting data D" to a
“data receiving node” 106 denoted “RN”. The nodes 102, 104
and 106 can thus be seen as direct or indirect users of the
original source data D. It should be noted that both data
processing nodes 102, 104 can also be regarded as data
receiving nodes in this context which term is used to simply
indicate that the nodes receive data from one or more preced-
ing nodes. It can be understood that the above-illustrated
distribution of data originating from various source nodes
may be cascaded in any number of “hops” in a tree-like
fashion along a data distribution path which could involve any
number of nodes in the data distribution path.

In more detail, a given node in the network, e.g. node 104
in FIG. 1, may be regarded as the root of a topological tree,
which tree corresponds to a data distribution path comprising
the root and the topologically preceding nodes, i.e. the nodes
1004, 1005, 102 in this simplified example, having taken part
in the data generation/distribution steps resulting in the data
D" generated at this root node 104. The data D" may be
further distributed to the node 106 as shown in the figure. The
set of source nodes having generated source data can be
regarded as the “leaves” of this tree, i.e. nodes 100 and 1005
correspond to leaves, but the node 102 does not.

When data is processed and transferred along a distribution
path with plural nodes, it may be of interest for any receivers
of data to ensure that the received data is really valid and
trustworthy and that it has not been manipulated of faked at
some point along its distribution path. Today, it is not pos-
sible, at least in a simple and efficient way that is practical to
implement, to make sure that the received data originates
from reliable sources, nor to identify those sources and any
processing nodes in-between.

Although various solutions are available for applying
authentication and verification of transferred data in a single
transfer hop, i.e. from one node to another, based on a trusted
relationship between the two nodes, the validity of the data
cannot be easily ensured over multiple hops or steps, unless
all nodes in the path belong to a trusted “community” where
all nodes and data consumers are trustworthy. This model can
be quite difficult or even impossible to implement, particu-
larly when a great number of diverse nodes and data consum-
ers are involved in the data distribution network, possibly
across multiple different countries. Even ifthis model is used,

US 9,432,384 B2

3

where basically all nodes share one or more keys, every node
in a data distribution path would have to add their own authen-
tication data to the transferred data to enable tracing of the
data, resulting in excessive increase of bandwidth where the
total size of the transferred data would grow with every trans-
fer hop. While some end-to-end security solutions are known
today for data distribution, these solutions may not be useful
and easily applicable since it is necessary to allow interme-
diate nodes to modify the distributed data, thus breaking the
end-to-end trust relation.

Asaresult, it is a problem that any receivers of data that has
been processed and derived from original source data in any
number ofhops along a distribution path, have no satisfactory
and practical way of ensuring authenticity and validity of the
received data and/or the original source data, as well as any
source nodes and processing nodes in-between, and it can
therefore not be trusted that the received processed data is
really valid.

SUMMARY

It is an object of embodiments described herein to address
at least some of the problems and issues outlined above. For
example, it is an object to enable verification of data when
received by a data handling node in a network of data han-
dling nodes. It is possible to achieve these objects and others
by using methods and nodes as defined in the attached inde-
pendent claims.

According to one aspect, a method is performed by a first
data handling node for verifying data in a data distribution
network with multiple data handling nodes forming a distri-
bution path in a network topology. In this method, the first
data handling node receives, from a second data handling
node in the data distribution network, distributed data and a
hash tag. The received hash tag has been generated based on
at least one previous hash tag which the second data handling
node has received from at least one preceding third data
handling node in the distribution path. The at least one third
data handling node has delivered data to the second data
handling node, wherein the received distributed data has been
generated by the second data handling node based on the data
delivered by the at least one third data handling node. The
received distributed data is dependent on source data gener-
ated by at least one source node in the distribution path.
Further, the received distributed data and the received hash
tag as well as the at least one previous hash tag are directly or
indirectly based on the source data.

In other words, the source data has been used by a succeed-
ing node for generating new data which in turn has been used
by a further succeeding node for generating further new data,
and so forth. In this way, consecutive nodes along the distri-
bution path generate new data from received data in a chain-
like manner such that the distributed data received by the first
data handling node is dependent on the source data “back-
wards” in the distribution path.

The first data handling node then obtains tag information
from a hash server which tag information can be used for
verification of the received hash tag, wherein the at least one
previous hash tag has been registered in the hash server.

The first data handling node further verifies the received
distributed data based on the tag information from the hash
server. The tag information indicates whether the hash tag
received from the second data handling node corresponds to
a valid hash tag calculated by applying a predefined hash
algorithm on the at least one previous hash tag registered in

10

15

20

25

30

40

45

50

55

60

65

4

the hash server. This verification of the received distributed
data can be made according to different embodiments, to be
described below.

The at least one source node that has generated source data
for distribution has also generated a source hash tag based on
the source data. Each consecutive hash tag generated by
respective nodes in the distribution path is generated based on
apreceding hash tag such that the source hash tag and also all
hash tags generated from preceding hash tags are all directly
or indirectly tied to the original source data via the source
hash tag. The generated hash tags have also been registered in
the hash server, which are somehow reflected in the tag infor-
mation obtained from the hash server. Thereby, any data
handling node down the distribution path is able to verify
received distributed data when the source data from which it
has been directly or indirectly generated is verified by the
hash tags.

According to another aspect, a first data handling node is
configured to verify data in a data distribution network with
multiple data handling nodes forming a distribution path in a
network topology. The data handling node comprises a
receiving unit adapted to receive, from a second data handling
node in the data distribution network, distributed data and a
hash tag generated based on at least one previous hash tag
received from at least one preceding third data handling node
in the distribution path. The at least one third data handling
node has delivered data to the second data handling node,
wherein the received distributed data has been generated by
the second data handling node based on the data delivered by
the at least one third data handling node. The received dis-
tributed data is dependent on source data generated by at least
one source node in the distribution path, and the received
distributed data and the above hash tags are directly or indi-
rectly based on the source data.

The data handling node also comprises an obtaining unit
adapted to obtain tag information from a hash server which
tag information can be used for verification of the received
hash tag, wherein the at least one previous hash tag has been
registered in the hash server.

The data handling node also comprises a verifying unit
adapted to verify the received distributed data based on the tag
information from the hash server. The tag information indi-
cates whether the hash tag received from the second data
handling node corresponds to a valid hash tag calculated by
applying a predefined hash algorithm on the at least one
previous hash tag registered in the hash server.

According to yet another aspect, a vehicle or vessel com-
prises the above-described first data handling node. Accord-
ing to further aspects, a computer program comprises com-
puter readable code which, when run on a data handling node,
causes the data handling node to behave as the above-de-
scribed first data handling node. A computer program product
further comprises a computer readable medium, wherein the
above computer program is stored on the computer readable
medium.

According to yet another aspect, a method is performed by
a hash server for enabling verification of data in a data distri-
bution network with multiple data handling nodes forming a
data distribution path of a network topology. In this method,
the hash server receives hash tags for registration, which hash
tags are sent from at least some of the data handling nodes in
the distribution path. The hash tags comprise a source hash
tag originating from a source node having generated source
data, and consecutive hash tags originating from succeeding
data handling nodes situated after the source node in the
distribution path. Each of the consecutive hash tags has been
generated by a corresponding data handling node by applying

US 9,432,384 B2

5

a predefined hash algorithm on at least a hash tag received
from an immediately preceding node in the distribution path.

The hash server further receives a request for tag informa-
tion from a requesting data handling node of the data handling
nodes, wherein the requesting data handling node has
received data and a hash tag from an immediately preceding
data handling node in the distribution path. The hash server
also determines the tag information based on at least one of
the hash tags originating from preceding data handling nodes
situated before the requesting data handling node in the dis-
tribution path according to the determined network topology.
The hash server then returns the determined tag information
to the requesting data handling node, thereby enabling the
requesting data handling node to use the tag information to
verify its received data.

According to yet another aspect, a hash server is configured
for enabling verification of data in a data distribution network
with multiple data handling nodes forming a data distribution
path of a network topology. The hash server comprises a first
receiving unit adapted to receive hash tags for registration
from at least some of the data handling nodes. The received
hash tags comprise a source hash tag originating from a
source node having generated source data, and consecutive
hash tags originating from succeeding data handling nodes
situated after the source node in the distribution path. Each of
the consecutive hash tags has been generated by a corre-
sponding data handling node by applying a predefined hash
algorithm on at least a hash tag received from an immediately
preceding node in the distribution path.

The hash server further comprises a second receiving unit
adapted to receive a request for tag information from a
requesting data handling node of the data handling nodes,
wherein the requesting data handling node has received data
and a hash tag from an immediately preceding data handling
node in the distribution path.

The hash server also comprises a logic unit adapted to
determine the tag information based on at least one of the hash
tags originating from preceding data handling nodes situated
before the requesting data handling node in the distribution
path according to the determined network topology.

The second receiving unit is further adapted to return the
determined tag information to the requesting data handling
node, thereby enabling the requesting data handling node to
use the tag information to verify its received data.

According to yet another aspect, a method is performed by
a data handling node for enabling verification of data in a data
distribution network with multiple data handling nodes form-
ing a distribution path of a network topology. In this method,
the data handling node receives, from a preceding data han-
dling node in the distribution path, distributed data and a hash
tag generated by the preceding data handling node. The data
handling node then generates new data based on the received
distributed data, and generates a new hash tag based on at
least the received hash tag.

The data handling node further delivers the new data and
the new hash tag to a subsequent data handling node, and
sends the new hash tag to a hash server for registration.
Thereby, the subsequent data handling node is enabled to
verify the delivered new data based on tag information from
the hash server, which tag information indicates whether the
delivered new hash tag corresponds to a valid hash tag calcu-
lated by applying a predefined hash algorithm on at least one
previous hash tag which has been generated by at least one
preceding data handling node and registered in the hash
server.

According to yet another aspect, a data handling node is
configured to enable verification of data in a data distribution

15

20

30

35

40

45

50

55

65

6

network with multiple data handling nodes forming a distri-
bution path of a network topology. The data handling node
comprises a receiving unit adapted to receive, from a preced-
ing data handling node in the distribution path, distributed
data and a hash tag generated by the preceding data handling
node. The data handling node also comprises a first generat-
ing unit adapted to generate new data based on the received
distributed data, and a second generating unit adapted to
generate a new hash tag based on at least the received hash
tag.

The data handling node also comprises a sending unit
adapted to send the new data and the new hash tag to a
subsequent data handling node. The second generating unit is
further adapted to send the new hash tag to a hash server for
registration. Thereby, the subsequent data handling node is
enabled to verify the delivered new data based on tag infor-
mation from the hash server, which tag information indicates
whether the delivered new hash tag corresponds to a valid
hash tag calculated by applying a predefined hash algorithm
on at least one previous hash tag generated by at least one
preceding data handling node and registered in the hash
server.

The above methods and nodes may be configured and
implemented according to different optional embodiments
and features, which will be explained in the detailed descrip-
tion below.

BRIEF DESCRIPTION OF DRAWINGS

The solution will now be described in more detail by means
of' exemplary embodiments and with reference to the accom-
panying drawings, in which:

FIG. 11is acommunication scenario illustrating distribution
and processing of data in a network, according to the prior art.

FIG. 2 is a flow chart illustrating a procedure in a data
handling node, according to some possible embodiments.

FIG. 3 is a block diagram illustrating distribution and veri-
fication of data, according to further possible embodiments.

FIG. 4 is a flow chart illustrating a more detailed example
of'a procedure in a data handling node, according to further
possible embodiments.

FIG. 5 is a block diagram illustrating a data handling node
in more detail when used, according to further possible
embodiments.

FIG. 6 is a flow chart illustrating a procedure in a hash
server, according to some possible embodiments.

FIG. 7 is a block diagram illustrating a hash server in more
detail when used, according to further possible embodiments.

FIG. 8 is a flow chart illustrating a procedure in a data
handling node, according to some possible embodiments.

FIG. 9 is a block diagram illustrating a data handling node
in more detail when used, according to further possible
embodiments.

FIG. 10 illustrates a possible software product that may be
used for implementing functionality in a data handling node.

DETAILED DESCRIPTION

Briefly described, a solution is provided in a first data
handling node to enable verification of whether distributed
data, received from a preceding second data handling node in
a data distribution network, is valid and can be trusted. It is
assumed in this description that the data is processed and
propagated in multiple steps by data handling nodes com-
prised in the data distribution network and forming a distri-
bution path of a certain network topology, i.e. a pattern of data
handling nodes connected to one another. It should be noted

US 9,432,384 B2

7

that the “first” data handling node in this description is not
necessarily a source node where source data is generated at
the beginning of the distribution path which source data is
original data that has not been processed in any preceding
node, but a node further down the distribution path which
receives previously generated and processed data. It is how-
ever a possibility that the first data handling node may gen-
erate its own local data to be processed together with the
received data.

The first data handling node also receives from the second
data handling node a hash tag attached to the data. In some
embodiments, the received hash tag has been generated by the
second data handling node based on one or more previous
hash tags which in turn have been generated by at least one
earlier third data handling node when delivering data to the
second data handling node. Alternatively or additionally, the
second data handling node may be a source node having
generated the received hash tag, based on its generated and
distributed data, which tag could thus be denoted as a “source
hash tag”. In the examples described herein, a source node
generating source data always generates a source hash tag
based on the source data such that the source hash tag and also
all hash tags generated from preceding hash tags are all
directly or indirectly tied to the original source data. Thereby,
any data handling node down the distribution path is able to
verify received distributed data when the source data from
which it has been generated is verified by the hash tags, which
will be explained in more detail in the following examples.

The received hash tag may thus effectively be an aggre-
gated hash tag in which multiple previous hash tags, gener-
ated one by one at the nodes earlier in the distribution path, are
incorporated by generating each consecutive hash tag based
on the immediately preceding hash tag, which will be
explained in more detail later below. Thus, the generated hash
tags are dependent on one another in a chain-like manner
along the distribution path, also being dependent on and thus
tied to the source data. The received distributed data may have
been generated by the second data handling node at least
based on the data delivered by the at least one third data
handling node and possibly also based on locally generated
source data and/or source data received from a source node. In
this disclosure, it should be understood that when generally “a
data handling node” or “a source node” is discussed here for
simplicity it may in practice comprise one or several data
handling nodes or source nodes, respectively, and the solution
is not limited to just one node.

An example of a procedure performed in a first data han-
dling node for verifying received data, will now be described
with reference to the flow chart in FIG. 2. It is assumed that
the first data handling node is located in a data distribution
network with multiple data handling nodes forming a distri-
bution path of a network topology. The distribution path starts
with one or more source nodes which generate source data
that is distributed and processed in successive data handling
nodes along the distribution path. Each of the one or more
source nodes also generates a source hash tag based on the
source data and the source hash tag is distributed with the
source data. The protocol used for conveying data between
the nodes may be any of the following known protocols:
hypertext transfer protocol http, Real Time Protocol RTP, File
Transfer Protocol FTP, and Constrained Application Protocol
CoAP, although the solution is not limited to these examples.
The distributed data could also comprise several different
types of data, e.g. both video and various forms of telemetry,
and different protocols could be used for different data types.
The first data handling node may be situated somewhere
down the path and there are thus a plurality of preceding data

10

15

20

25

30

35

40

45

50

55

60

65

8

handling nodes, i.e. at least two nodes in this example, situ-
ated before the first data handling node in the distribution
path. For example, the node 104 in FIG. 1 could act as the
“first” data handling node described here. Further examples
of distribution path are shown in FIGS. 3,5 and 7.

In a first shown action 200, the first data handling node
receives, from a second data handling node being a data
handling node situated immediately before the first node in
the data distribution path, distributed data and a hash tag.
Here, the term “situated immediately before” does not
exclude the possibility that in practice there may still be a
node between the first and second nodes that just relays the
data and the hash tag without processing, e.g. a bridge,
repeater or relay, which can therefore be disregarded when
considering this solution. The received hash tag has been
generated by the second data handling node based on at least
one previous hash tag which in turn has been generated by at
least one preceding third data handling node situated imme-
diately before the second node in the path, at least logically
not excluding a possible relaying non-processing node in
between here as well. The at least one third data handling
node has delivered data to the second data handling node
together with one of the previous hash tag(s). All these hash
tags are thus dependent on and tied to the source data. It
should be noted that generally an individual data handling
node only needs to produce a single tag to be forwarded to the
next data handling node.

Further, the distributed data received by the first data han-
dling node in this action has been generated by the second
data handling node based on the data delivered by the at least
one third data handling node to the second data handling
node. Further, the second data handling node may at the same
time also be a source node in the sense of having generated the
above received distributed data from a combination of its
local source data and the data delivered by the at least one
third data handling node, and the received hash tag may in that
case be based on the local source data and the at least one
previous hash tag. In either case, the received hash tag is tied
to and indirectly or directly dependent on the source data and
can therefore be used to verify the validity and truthfulness of
that source data and of the received data.

A next action 202 illustrates that the first data handling
node obtains tag information from a trusted hash server,
which tag information can be used for verification of the hash
tag received from the second data handling node. The at least
one previous hash tag has been registered in the hash server by
the respective preceding data handling node(s) in the distri-
bution path. If the received hash tag is proved to be correct
according to the tag information from the hash server, the
received hash tag effectively also verifies the data delivered
from the second data handling node since this data has been
generated indirectly based on the original source data and the
received hash tag is tied to that source data, as explained
above. It is thus assumed that the tag information provided by
the hash server can be trusted as genuine and not faked or
manipulated.

Thus, another action 204 in this procedure illustrates that
the first data handling node verifies the received distributed
data based on the tag information obtained from the hash
server. In more detail, the obtained tag information chiefly
indicates whether the hash tag received from the second data
handling node corresponds to a “valid hash tag” which is
calculated, either by the first node or by the hash server, by
applying a predefined hash algorithm, “A”, on the at least one
previous hash tag generated by the preceding data handling
nodes in the distribution path. A is thus a cryptographic hash
function. For example, the data may be verified if the received

US 9,432,384 B2

9

hash tag is equal to the calculated valid hash tag, or if they
otherwise correspond to each other in a predefined way,
which is indicated by the obtained tag information. In the
general case, it may be required that a certain predefined
relation “F” is true, which relation can be expressed as: F(re-
ceived hash tag, valid hash tag), where F is the predefined
relation. In a simple example, relation F(received hash tag,
valid hash tag) is true only if received hash tag=valid hash tag.

If'the received and valid hash tags do not correspond to one
another, e.g. according to the relation F, the received data may
be discarded since it has not been verified by the received hash
tag. Nevertheless, the first data handling node may still decide
to use the received data even though it has not been verified
and thus cannot be trusted, which is however outside the
scope of this solution.

In different possible embodiments, the valid hash tag may
be calculated by the first data handling node or by the hash
server, depending on the implementation. In one possible
alternative, the tag information obtained from the hash server
may comprise the registered at least one previous hash tag. In
that case, the first data handling node calculates the valid hash
tag by applying the predefined hash algorithm A on the reg-
istered at least one previous hash tag comprised in the
obtained tag information, e.g. as A(registered tag . . .). The
first data handling node then compares the calculated valid
hash tag with the received hash tag to determine whether they
correspond to one another or not, e.g. whether A(registered
tag . . .)=received tag.

In another possible alternative, the tag information
obtained from the hash server may explicitly comprise the
valid hash tag when it has been calculated by the hash server
by using the predefined hash algorithm A in the manner
described above. In that case, the first data handling node is
able to compare the received valid hash tag with the hash tag
received from the second data handling node for verification
of the data. In yet another possible alternative, the tag infor-
mation obtained from the hash server may simply comprise a
direct confirmation, e.g. the outcome of F(received hash tag,
valid hash tag), whether the hash tag received from the second
data handling node corresponds to the valid hash tag or not,
where the valid hash tag has been calculated by the hash
server by using the predefined hash algorithm. In this
example, the logic for comparing the calculated and received
hash tags is thus performed by the hash server.

Returning to the flow chart in FIG. 2, a final optional action
206 illustrates that the first data handling node may use the
distributed data received from the second data handling node,
when the received distributed data has been verified accord-
ing to the valid hash tag. The first data handling node is thus
able to use the received and verified data in different possible
ways. In one embodiment, the first data handling node may
use the received data by generating new data based on the
received data for distribution to another data handling node
further down the distribution path. In that case, the first data
handling node generates a new hash tag based on at least the
hash tag received from the second data handling node, which
latter tag was verified in action 202 above. The first data
handling node then delivers the new data and the new hashtag
to a subsequent fourth data handling node. The first data
handling node may further send the new hash tag to the hash
server for registration.

The first data handling node may use the data in other ways
than processing it further, and the solution is not limited in
this respect. When the first data handling node is a final node
in the distribution path, it may use the received data by per-
forming or triggering some action or task according to the
data. For example, if the data indicates excessive temperature

10

15

20

25

30

35

40

45

50

55

60

65

10

in a power plant, the node may activate a cooling system,
issue an alarm, or activate some controlling operation to
counteract the temperature rise. Another example may be
when the first data handling node is situated in a vehicle or
vessel and the received data refers to some factor affecting the
vehicle or vessel in some way, e.g. the weather or conditions
relating to traffic, road, etc. In that case, the first data handling
node may use the data for controlling the vehicle or vessel
accordingly. Further, traffic data may be used to detect acci-
dents. When a road accident is indicated by the received data,
the reliability of the accident data can be verified by checking
if the data originates from vehicles close to the accident site.
Another example is when the data indicates some illicit or
malicious activity by analyzing images from a camera. This
solution enables verification of the data to ensure that the
camera is reliable.

Further embodiments are possible to use in the above pro-
cedure, e.g. according to the following examples. In one
example, the first data handling node may further receive an
authentication value from the second data handling node,
which authentication value has been calculated by the second
data handling node based on the hash tag received by the first
data handling node and a key known to the second data
handling node. In that case, the first data handling node is able
to use the authentication value to authenticate the received
hash tag, to ensure that the hash tag is reliable and not deliv-
ered by some malicious party. Effectively, if the received
authentication value proves to be correct, it contributes to the
verification of the data itself as well. The key in this embodi-
ment may be a shared key known to the first data handling
node or a private key of the second data handling node cor-
responding to a public key known to the first data handling
node, which keys may be used according to conventional
procedures. In the latter case, the first data handling node may
use the corresponding public key to verify the authentication
value. In addition, the authentication value may be further
based on the received distributed data.

It should be noted that verification of the authentication
value ensures the first data handling node that the received
data and hash tag are really received from the second data
handling node and not from some other possibly malicious
entity. Although verifying the authentication value does not
imply that the received tag is ““valid” as such, it can be advan-
tageous since it ensures that the hash server is contacted by
the first data handling node based on an authenticated hash tag
that has been received from the second data handling node in
both the hash server and the first data handling node.

In yet another possible embodiment, when delivering new
data to a fourth data handling node as described above, the
first data handling node may calculate a new authentication
value at least based on the new hash tag it has generated and
a key known to the first data handling node, and deliver the
new authentication value to the fourth data handling node
together with the new data and the new hash tag. Thereby, the
fourth data handling node is enabled to authenticate the new
hash tag by using the new authentication value, basically in
the same way that was described for the first data handling
node above.

An example of a possible scenario for distribution and
verification of data by data handling nodes forming a distri-
bution path of a network topology where the above-described
embodiments can be used, will now be described with refer-
ence to the block diagram in FIG. 3. In this scenario, the data
distribution path starts with two data handling nodes 300a and
3005 which are source nodes generating source data D1 and
D2, respectively, which data is delivered to a data handling
node 302. The latter node 302 in turn is a data processing node

US 9,432,384 B2

11

that generates new data D3 based on the received source data
D1 and D2, and delivers the generated data D3 to another data
handling node 304. It is also possible that node 302 may
generate the new data D3 further based on locally generated
source data, schematically indicated by numeral 302a. Here,
the data handling node 304 corresponds to the “first data
handling node” in the example of FIG. 2, the data handling
node 302 corresponds to the “second data handling node”
described for FIG. 2, and the data handling nodes 300q,5
correspond to the “at least one preceding third data handling
node” described for FIG. 2.

A dashed arrow indicates that the data handling node 304
may further generate new data D4 based on the data D3
received from node 302, and deliver the new data D4 to yet
another data handling node 308 which thus corresponds to the
“subsequent fourth data handling node” described for FIG. 2.
This figure also illustrates a hash server 306 where various
hash tags are registered which can be retrieved and used by
the data handling node 304 for verifying the received data D3
as follows. It is assumed that the hash server 306 is trustwor-
thy and that hash tags provided therefrom can be deemed
valid and not faked or manipulated.

Initially, the two data handling nodes 300a and 3005, being
data source nodes, send their source hash tags H1 and H2,
respectively, to the hash server 306 for registration, as shown
by actions 3:1a and 3:15. The hash tags H1 and H2 have been
generated based on the respectively generated source data D1
and D2, e.g. using a predefined algorithm such as the above-
described hash function A. It is also possible that the nodes
300q and 3005 registers their source data D1 and D2 as well
in the hash server which would enable a more thorough
inspection of hash tags later on. Alternatively, source nodes
300q and 3005 could save the source data locally in case of a
later inspection.

Next, actions 3:2a and 3:25 illustrate that the data handling
nodes 300a and 3006 deliver their source data D1, D2
together with the hash tags H1, H2 and authentication values
Al and A2, respectively, to the next data handling node 302 in
the path. It may also be possible that nodes 300a and 30056 do
notinclude their hash tags H1, H2 with the source data D1, D2
such that they can be retrieved from the hash server 306
anyway by the data handling node 302. The hash tags H1, H2
have thus been generated based on the respective source data
D1, D2 and are therefore tied to the respective source data D1,
D2. Further, the authentication values A1 and A2 have been
calculated, using another predefined algorithm, based on the
hash tags H1, H1 and respective keys K1 and K2, as indicated
in the figure. Thereby, the hash tag H1 and authentication
value Al are tied to the source data D1 generated by the
source node 300q, and correspondingly the hash tag H2 and
authentication value A2 are tied to the source data D2 gener-
ated by the source node 3005. Each of the keys K1 and K2
may be a shared key known to the data handling node 302 or
a private signature key of the data handling nodes 300a and
3005, respectively, corresponding to a public key known to
the data handling node 302. In the latter case, the first data
handling node may use the corresponding public key to verify
the authentication values Al and/or A2, respectively.

Having received the hash tags H1, H2 and the authentica-
tion values Al, A2 together with the data D1, D2 from the
source nodes 300a and 3004, the data handling node 302 is
able to authenticate the hash tags H1, H2 using the authenti-
cation values Al, A2, respectively, and also to verify the
received data D1, D2 by the authenticated hash tags H1, H2,
if desired. In this example, the received data D1, D2 is verified
and the hash tags H1, H2 are authenticated accordingly in an
action 3:3.

10

15

20

25

30

35

40

45

50

55

60

65

12

The data handling node 302 then generates new data D3
based on the received source data D1, D2, as shown by
another action 3:4. The data handling node 302 also generates
anew hash tag H3 based on the received hash tags H1, H2 and
using the hash function A, as shown by next action 3:5. In this
way, with A being a cryptographic hash function, the new
hash tag H3 is indirectly based on, and thereby tied to, the
source data since H3=A(H1, H2)=A(A(D1),A(D2)), it would
be infeasible for any other source data, different from D1
and/or D2, to result in the same tag H3 as it would imply a
collision in the hash function A.

Another action 3:6 illustrates that the data handling node
302 may send the generated new hash tag H3 to the hash
server 306 for registration, even though this registration may
be done otherwise as follows. A succeeding node in the trans-
mission path, i.e. the next node 304, may alternatively send
the hash tag H3 to server 306 for registration after having
received it together with data from the node 302. As a result,
itis not necessary that each and every node in the transmission
path send their own generated hash tags to the server 306. It is
thus possible that only some of all the nodes in the transmis-
sion path are connected to the hash server 306 for sending
such hash tags thereto for registration.

When sending their hash tags to the hash server 306 for
registration, the data handling nodes in the transmission path
may also send position information indicating their respec-
tive positions in the distribution path. The position informa-
tion may comprise information about one or more directly
connected nodes. For example, node 302 may send position
information to server 306 in action 3:6 indicating that node
302 is connected to the preceding nodes 3004, 3005 and to the
succeeding node 304. Thereby, the hash server 306 is enabled
to determine the network topology based on the received
position information of the nodes. The determined network
topology will be used later by the hash server 306 to deter-
mine tag information, as will be described below.

Another action 3:7 illustrates that the data handling node
302 then calculates a new authentication value A3 based on at
least the new hash tag H3 and a key K3 known to the first data
handling node and optionally also based on the new data D3.
The data handling node 302 finally delivers the new data D3
together with the new hash tag H3 and the new authentication
value A3 to the next data handling node 304, in an action 3:8.
The actions performed by this data handling node 304 corre-
spond at least partly to the actions 200-206 of FIG. 2
described above, where action 3:8 including receiving D3, H3
and A3 corresponds to action 200.

In action 3:9, the data handling node 304 authenticates the
received hash tag H3 by using the authentication value A3. If
K3 is a shared key, the data handling node 304 may calculate
the authentication value based on K3. K3 may for example be
a shared key known to the data handling node 302 or a private
key of the data handling node 302. If K3 is a private key, the
data handling node 304 is able to authenticate the hash tag H3
by calculating the authentication value based on a corre-
sponding public key according to conventional procedures.

Having authenticated the received hash tag H3, the data
handling node 304 obtains tag information from the hash
server 306 in another action 3:10, e.g. by sending a request for
tag information or the like to server 306 and receiving a
response with the tag information therefrom. This action basi-
cally corresponds to action 202 in FIG. 2. The obtained tag
information can be used by node 304 for verifying the
received data D3 as follows. In this example, the obtained tag
information comprises the previous hash tags H1, H2, regis-
tered by the source nodes 3004, 3005 in actions 3:1a and 3:15.
The data handling node 304 then calculates a valid hash tag

US 9,432,384 B2

13
Hx, in an action 3:11, by applying a predefined hash algo-
rithm on the previous hash tags H1, H2 comprised in the
obtained tag information. In some alternative embodiments,
the valid hash tag Hx may be calculated by the hash server 306
instead, which embodiments were described above with ref-
erence to action 204.

In another action 3:12, the data handling node 304 com-
pares the calculated valid hash tag Hx with the received hash
tag H3. If the hash tags Hx and H3 correspond to one another,
e.g. by equality or by some other predefined relation e.g,
according to a predefined function F as described above for
action 204, the received data D3 is verified. This action basi-
cally corresponds to action 204 in FIG. 2.

This calculation of a valid hash tag based on previous hash
tags of nodes in the distribution path as obtained from the
hash server 306, may be executed for data propagated and
processed by any number of previous data handling nodes
such that each hash tag generated by each node is derived
“backwards” based on the next preceding hash tag throughout
the distribution path. Thus, the successive hash tags generated
along the path can be resolved backwards, step by step, in this
way. All of these hash tags are also tied to the original source
data by being generated directly or indirectly based on the
source data, as explained above. For example, it may be
desired to validate data originating from a particular node
located somewhere down the path, and in that case it is only
necessary to resolve the hash tags backwards until the hash
tag of that node is reached. Further, if it is desired to verify
data which is dependent on source data from a source node, it
is necessary to resolve the hash tags all the way back to that
source node. It is thus an advantage that received data can be
verified by a receiving data handling node with respect to any
number of freely selected preceding nodes in the distribution
path. However, it is not required nor necessary that all inter-
mediate nodes perform the verification of data. One or more
of the nodes may thus refrain from performing the verifica-
tion, which will be described in more detail with reference to
FIGS. 8 and 9 below.

Another action 3:13 illustrates that the data handling node
304 uses the received data D3 when the data D3 has been
verified according to the valid hash tag Hx, corresponding to
action 206 in FIG. 2. In this example, the data handling node
304 uses the received data D3 by generating new data D4
based on the data D3. Inanother action 3:14, the data handling
node 304 may also generate a new hash tag H4 based on the
hash tag H3 received from data handling node 302, and may
further calculate a new authentication value A4 at least based
on the new hash tag H4 and a key K4, basically in the same
manner as described for actions 3:5 and 3:7 above. The new
hash tag H4 will be tied to the original source data D1, D2 as
well since H4 is indirectly based on the source data D1, D2 by
being generated based on H3 which in turn was generated
based on H1 and H2 which in turn were generated based on
D1 and D2, respectively.

Another action 3:15 illustrates that the data handling node
304 finally delivers the new data D4, the new hash tag H4 and
the new authentication value A4 to another subsequent data
handling node 308. The node 308 thus corresponds to the
fourth data handling node mentioned above when describing
action 206. The data handling node 304 may further send the
new hash tag H4 to the hash server 306 for registration, not
shown.

A detailed example of a procedure that may be performed
by a first data handling node when using at least some of the
above embodiments will now be described with reference to
the flow chart in FIG. 4. Various actions in the forgoing
examples will be referenced for further explanation. Similar

10

15

20

25

30

35

40

45

50

55

60

65

14

to the example of FIG. 2, it is assumed that the first data
handling node is located in a data distribution network with
multiple data handling nodes forming a distribution path of'a
network topology, starting with at least one source node
which generates source data that is distributed and processed
in successive data handling nodes along the distribution path.
It is also assumed that first data handling node chooses to
perform validation of received data. The first data handling
node performing this procedure may be situated in the path at
a position where there is a plurality of preceding data han-
dling nodes, i.e. at least two, situated before the first data
handling node in the path.

In a first shown action 400, the first data handling node
receives data, a hash tag and an authentication value from a
preceding second data handling node, basically correspond-
ing to actions 200 and 3:8 above. The first data handling node
then authenticates the received hash tag by using the received
authentication value, in an action 402, basically correspond-
ing to action 3:9 above. In another action 404, the first data
handling node fetches previous hash tags from a hash server,
which tags have been generated and registered by preceding
data handling nodes in the path, basically corresponding to
actions 202 and 3:10 above.

The first data handling node then calculates a valid hash tag
by applying a predefined hash algorithm on the fetched pre-
vious hash tags, in an action 406, basically corresponding to
action 3:11 above. The first data handling node compares the
calculated valid hash tag to the received hash tag to determine
whether they correspond to one another, e.g. by equality, in a
further action 408, basically corresponding to actions 204 and
3:12 above. If not, the received data cannot be verified as
trustworthy, and the data is therefore discarded in an action
410. On the other hand, if the calculated valid hash tag cor-
responds to the received hash tag, the first data handling node
is able to use the received and verified data by generating new
data based on the received data, in another action 412. This
action basically corresponds to actions 206 and 3:13 above.

A further action 414 illustrates that the first data handling
node generates a new hash tag based on the hash tag received
from the second data handling node. The first data handling
node also calculates a new authentication value based on the
new hash tag akey and the new data, in an action 416. Actions
414 and 416 basically correspond to action 3:14 above. In
another action 418, the first data handling node sends the new
data, the new hash tag and the new authentication value to a
fourth data handling node situated after the first node in the
distribution path, basically corresponding to action 3:15
above. A final action 420 illustrates that the first data handling
node also sends the new hash tag to the hash server or regis-
tration, such that any data handling node situated after the first
node in the distribution path can verify further processed and
distributed data in the manner described herein.

As indicated above, the embodiments described herein
may be implemented in a vehicle or vessel, e.g. the distributed
and verified data may be used for controlling the vehicle or
vessel accordingly, or for handling any other process, mecha-
nism or apparatus. Further, a vehicle or vessel may comprise
a first data handling node according to any of the above
embodiments.

A detailed but non-limiting example of how a first data
handling node may be configured to accomplish the above-
described embodiments, is illustrated by the block diagram in
FIG. 5. The first data handling node 500 is configured to
verify data in a data distribution network with multiple data
handling nodes forming a distribution path of a network
topology. The data handling node 500 will now be described
in terms of a possible example of employing the solution.

US 9,432,384 B2

15

The data handling node 500 comprises a receiving unit
500q adapted to receive, from a second data handling node
502 in the data distribution network, distributed data D3 and
a hash tag H3 generated by the second data handling node
based on at least one previous hash tag H1, H2 . . . which in
turn were generated by at least one preceding third data
handling node 504. The at least one third data handling node
504 has delivered data D1, D2 . . . to the second data
handling node 502, and the data D3 received by the node 500
has been generated by the second data handling node 502
based on the data D1, D2 . . . delivered by the at least one
third data handling node 504.

The data handling node 500 also comprises an obtaining
unit 6005 adapted to obtain tag information from a trusted
hash server 506, e.g. by sending a request for tag informa-
tion or the like to the server 506, which tag information can
be used for verification of the received hash tag H3. The at
least one previous hash tag H1, H2 . . . has been registered
in the hash server 506, as indicated by dashed arrows.

The data handling node 500 further comprises a verifying
unit 500¢ adapted to verify the received distributed data D3
based on the tag information obtained from the hash server
506. The obtained tag information indicates, in some way,
that the hash tag H3 received from the second data handling
node 502 corresponds to a valid hash tag Hx which is
calculated by applying a predefined hash algorithm on the at
least one previous hash tag H1, H2 . . ., e.g. as explained in
examples above. Some possible alternatives of how the
obtained tag information can be used for the verification
have been described above with reference to action 204. For
example, the tag information may comprise the at least one
previous hash tag H1, H2 . . .| or the valid hash tag Hx being
calculated by the hash server 506, or a confirmation that the
received hash tag H3 corresponds to the valid hash tag Hx
calculated by the hash server. In the latter case, the data
handling node 500 may need to send the received hash tag
H3 to the hash server 506 e.g. in the above-mentioned
request.

The data handling node 500 may also comprise a using
unit 5004 adapted to use the received distributed data D3
when the received distributed data has been verified accord-
ing to the valid hash tag Hx. The data D3 can be used for
generating new data, as further described above. In this way,
the received data D3 can be trusted as being genuine and not
faked or manipulated, and it can be assured that the data D3
has been generated based on reliable data generated earlier
in the distribution path. It is also an advantage that verifi-
cation of data based on successive hash tags can be made for
a freely selected number of preceding steps in the distribu-
tion path, e.g. all the way back to one or more source nodes
or to some intermediate node situated between the first node
500 and the source node(s).

The data handling node 500 and its functional units
500a-d may be configured or adapted to operate according
to various optional embodiments. In a possible embodiment,
the receiving unit 500a may be further adapted to also
receive an authentication value A3 from the second data
handling node 502, which authentication value has been
calculated by the second data handling node based on the
hash tag H3 received by the first data handling node and a
key known to the second data handling node. In that case,
the verifying unit 500c¢ is further adapted to use the authen-
tication value A3 to authenticate the received hash tag H3.
Thereby, the hash tag H3 can be trusted as reliable and used
for the verification of the received data D3.

In another possible embodiment, when the obtained tag
information comprises the registered at least one previous
hash tag H1, H2 . . . , the verifying unit 500¢ may be further

10

15

20

25

30

35

40

45

50

55

60

65

16

adapted to calculate the valid hash tag Hx by applying the
predefined hash algorithm on the at least one previous hash
tag H1, H2 . . . comprised in the obtained tag information. In
another possible embodiment, when the obtained tag infor-
mation comprises the valid hash tag Hx as such being calcu-
lated by the hash server by using the predefined hash algo-
rithm, the verifying unit 500¢ may be further adapted to
compare the valid hash tag Hx with the hash tag H3 received
from the second data handling node 502. In yet another pos-
sible embodiment, the obtained tag information may com-
prise a confirmation that the hash tag H3 received from the
second data handling node corresponds to the valid hash tag
Hx being calculated by the hash server by using the pre-
defined hash algorithm.

In further possible embodiments, the using unit 5004 may
be further adapted to use the received distributed data D3 by
generating new data D4 based on the received distributed data
D3, to generate a new hash tag H4 based on at least the
received hash tag H3, and to deliver the new data D4 and the
new hash tag H4 to a subsequent fourth data handling node
508, as indicated by another dashed arrow in the figure. This
enables the fourth data handling node 508 to verify the data
D4 in a corresponding manner as described above.

In further possible embodiments, the using unit 5004 may
be further adapted to calculate a new authentication value at
least based on the new hash tag H4 and a key known to the first
data handling node, and to deliver the new authentication
value A4 to the fourth data handling node 308, thereby
enabling the fourth data handling node to authenticate the
new hash tag H4 by using the new authentication value.

The above-described embodiments may be implemented
in a computer program comprising computer readable code
which, when run on a data handling node, causes the data
handling node to behave as a data handling node according to
any of the above-described embodiments, such as the node
304 in FIG. 3 and/or the node 500 in FIG. 5. Further, the
above-described embodiments may be implemented in a
computer program product comprising a computer readable
medium, and a computer program. The computer program
product may be a compact disc 800, as shown in FIG. 8, or
other entity suitable for holding the computer program. The
computer program may also be downloadable e.g. from a
software server or the like. The computer program comprises
computer readable code which, when run on a data handling
node, causes the data handling node to behave as a data
handling node according to any of the above-described
embodiments, such as the node 304 in FIG. 3 and/or the node
500 in FIG. 5. The computer program is stored on the com-
puter readable medium. Some examples of how the computer
program and computer program product can be realized in
practice are provided later below.

An exemplary procedure performed by a hash server, for
enabling verification of data in a data distribution network
with multiple data handling nodes forming a data distribution
path of a network topology, will now be described with ref-
erence to the flow chart in FIG. 6. The hash server in this
procedure may basically act as the hash servers 306 and 506
in FIGS. 3 and 5, respectively, or according to the examples
described for FIGS. 2 and 4. A first action 600 illustrates that
the hash server receives hash tags for registration, the hash
tags being sent from at least some of the data handling nodes.
The hash tags comprise a source hash tag originating from a
source node having generated source data, and consecutive
hash tags originating from succeeding data handling nodes
situated after the source node in the distribution path.

The protocol used for conveying hash tags from the data
handling nodes to the hash server may be any of the following

US 9,432,384 B2

17

known protocols: hypertext transfer protocol http, Real Time
Protocol RTP, File Transfer Protocol FTP, and Constrained
Application Protocol CoAP, although the solution is not lim-
ited to these examples. Each of the consecutive hash tags has
been generated by a corresponding data handling node by
applying a predefined hash algorithm on a hash tag received
from an immediately preceding node in the path. It should be
noted that more than one source nodes may be involved
generating source data and source hash tags received in this
action.

In a next optional action 602, the hash server may deter-
mine the network topology based on position information
received with each hash tag, where the position information
indicates a position of respective data handling nodes in the
distribution path. For example, the position information may
specify at least one preceding node and at least one subse-
quent node to which the respective data handling node is
connected in the path. The network topology may form a tree
structure, sometimes referred to as a “Merkle tree”, in which
aplurality of source nodes are leaves distributing source data
down the path to other nodes forming branches in the tree
structure. Alternatively, the network topology may be fixed
and known in beforehand.

At some point later, the hash server receives a request for
tag information from a requesting data handling node of the
data handling nodes, in a further action 604. The requesting
data handling node has received data and a hash tag from an
immediately preceding data handling node in the distribution
path. The hash server then determines the tag information
based on at least one of the hash tags originating from pre-
ceding data handling nodes situated before the requesting
data handling node in the distribution path according to the
network topology, in another action 606. The hash server
finally returns the determined tag information to the request-
ing data handling node, in a last shown action 608. Thereby,
the requesting data handling node is enabled to use the tag
information to verify its received data, basically in the manner
described for the examples above with the actions performed
by the “first data handling node”.

An example of how a hash server may be configured to
accomplish the above-described embodiments is illustrated
by the block diagram in FIG. 7. The hash server 700 is
configured to enable verification of data in a data distribution
network with multiple data handling nodes 702 forming a
data distribution path of a network topology, e.g. according to
the procedures and features described above for any of FIGS.
2-6, respectively. The hash server 700 will now be described
in terms of a possible example of employing the solution. The
data distribution path in this example comprises two source
nodes N1 and N2, and a plurality of subsequent data handling
nodes N3, N4 . . . which process and distribute data which is
dependent on source data generated by nodes N1 and N2. This
example path is somewhat simplified having only two source
nodes and a single line of successive data handling nodes,
while a data distribution path in reality may comprise much
more nodes connected to one another in a more or less com-
plex pattern depending on the network topology.

The hash server 700 comprises a first receiving unit 700a
which is adapted to receive hash tags H1, H2, H3 . . . for
registration from at least some of the data handling nodes
N1-N5. The registered hash tags comprise source hash tags
H1, H2 originating from the source nodes N1, N2 having
generated source data, and consecutive hash tags H3, H4, HS
generated by the subsequent data handling nodes N3, N4 and
NS5 which are thus situated after the source nodes N1, N2 in
the distribution path. The first receiving unit 700a may also
receive source data from Node N1 and/or node N2 for regis-

5

10

15

20

25

30

35

40

45

50

55

60

18

tration if desired, as described above for actions 3:1a and
3:156. The hash tags H1-H5 are registered by storing them
together with position information regarding the respective
data handling nodes N1-N5 in a suitable storage unit 7005 in
the hash server 700. The nodes may provide such position
information “PO” when sending the hash tags to server 700
for registration. Each of the consecutive hash tags H3, H4, H5
has been generated by a corresponding data handling node
N3, N4 and N5, respectively, by applying a predefined hash
algorithm on a hash tag received from an immediately pre-
ceding node in the distribution path.

In more detail, the source nodes N1 and N2 generate the
source hash tags H1 and H2, respectively, which are regis-
tered in hash server 700 and delivered together with source
data to the next node N3. The node N3 then generates its own
hash tag H3 based on the previous source hash tags H1 and
H2, and hash tag H3 is registered in hash server 700 and
delivered together with processed data to the nextnode N4. In
the same way, node N4 generates its own hash tag H4 based
on the previous hash tag H3, and hash tag H4 is registered in
hash server 700 and delivered together with further processed
data to the next node N5. To continue, node N5 generates its
own hash tag H5 based on the received previous hash tag H4,
and hash tag H5 is likewise registered in hash server 700 and
delivered together with further processed data to the next
node N6. This process may be repeated for a number of
further steps along the path with successive data handling
nodes, each generating its own hash tag based on one or more
received previous hash tags. All these hash tags can then be
resolved backwards in the path by any one of the data han-
dling nodes in the manner described above.

The hash server 700 further comprises a logic unit 700¢
which may be adapted to determine the network topology
based on the position information PO received with each hash
tag H1-H5, which position information indicates the position
of the respective data handling nodes N1-N5 in the distribu-
tion path. The hash server 700 also comprises a second receiv-
ing unit 7004 adapted to receive a request “Req” for tag
information from a requesting data handling node N6 of the
data handling nodes 702, wherein the requesting data han-
dling node N6 has received data and a hash tag H5 from the
immediately preceding data handling node N5 in the distri-
bution path. The requesting data handling node N6 may refer
to the received hash tag H5 or its topology position in the
request.

When the request Req has been received from node N6, the
logic unit 700c¢ is further adapted to determine the tag infor-
mation based on at least one of the hash tags originating from
preceding data handling nodes situated before the requesting
data handling node in the distribution path according to the
network topology. The logic unit 700c¢ is thus able to retrieve
necessary information about the registered hash tags from the
storage 7005, depending on the network topology, as shown
by the two-way arrow in the figure. Finally, the second receiv-
ing unit 7004 is further adapted to return the determined tag
information “Tag info” to the requesting data handling node
N6, thereby enabling the node N6 to use the tag information
to verify its received data.

The hash server 700 and its functional units 700a-d may be
configured or adapted to operate according to various
optional embodiments. In a possible embodiment, the second
receiving unit 7004 may be further adapted to return one or
more of the hash tags H1-HS5 originating from the preceding
data handling nodes N1-N5 as the tag information. In that
case, the requesting data handling node will be enabled to
perform verification by calculating a valid hash tag by apply-
ing the predefined hash algorithm on the returned one or more

US 9,432,384 B2

19

hash tags H1-H5 originating from the preceding data han-
dling nodes, and comparing the valid hash tag with the hash
tag received by the requesting data handling node.

In another possible embodiment, the logic unit 700¢ may
be further adapted to calculate the valid hash tag by using the
predefined hash algorithm, and the second receiving unit
700d is further adapted to return the calculated valid hash tag
as the tag information. In that case, the requesting data han-
dling node will be enabled to perform verification by com-
paring the returned valid hash tag with the hash tag received
by the requesting data handling node.

In yet another possible embodiment, the logic unit 700¢
may be further adapted to calculate the valid hash tag by using
the predefined hash algorithm, and to compare the calculated
valid hash tag with the hash tag received by the requesting
data handling node, and the second receiving unit 7004 is
further adapted to return the tag information comprising an
indication indicating whether the hash tag received by the
requesting data handling node corresponds to the valid hash
tag.

It should be noted that FIG. 5 and FIG. 7 illustrate various
functional units in the first data handling node 500 and in the
hash server 700, and the skilled person is able to implement
these functional units in practice using suitable software and
hardware. Thus, the solution is generally not limited to the
shown structures of the first data handling node 500 and the
hash server 700, and the functional units 500a-d, 700a-d may
be configured to operate according to the features described
in this disclosure, where appropriate.

The above-described embodiments may be implemented
in a computer program comprising computer readable code
which, when run on a data processing node, causes the data
processing node to behave as a data processing node. Further,
the above-described embodiments may be implemented in a
computer program product comprising a computer readable
medium, and a computer program. The computer program
product may be a compact disc 1000, as shown in FIG. 10, or
other entity suitable for holding the computer program. The
computer program may also be downloadable e.g. from a
server or the like. The computer program comprises computer
readable code which, when run on a data processing node,
causes the data processing node to behave as a data process-
ing node such as the node 304 in FIG. 3 and/or the node 500
in FIG. 5. The computer program is stored on the computer
readable medium. Some examples of how the computer pro-
gram and computer program product can be realized in prac-
tice are provided below.

The functional units 500a-d, 700a-d described above can
be implemented in the first data handling node 500 and the
hash server 700, respectively, by means of program modules
of a respective computer program comprising code means
which, when run by a processor “P” in each node 500, 700
causes the first data handling node 500 and the hash server
700 to perform the above-described actions and procedures.
Each processor P may comprise a single Central Processing
Unit (CPU), or could comprise two or more processing units.
For example, each processor P may include a general purpose
microprocessor, an instruction set processor and/or related
chips sets and/or a special purpose microprocessor such as an
Application Specific Integrated Circuit (ASIC). Each proces-
sor P may also comprise a storage for caching purposes.

Each computer program may be carried by a computer
program product in the first data handling node 500 and the
hash server 700, respectively, in the form of a memory “M”
having a computer readable medium and being connected to
the processor P. Each computer program product or memory
M thus comprises a computer readable medium on which the

10

15

20

25

30

35

40

45

50

55

60

65

20

computer program is stored e.g. in the form of computer
program modules “m”. For example, the memory M in either
node 500, 700 may be a flash memory, a Random-Access
Memory (RAM), a Read-Only Memory (ROM) or an Elec-
trically Erasable Programmable ROM (EEPROM), and the
program modules m could in alternative embodiments be
distributed on different computer program products in the
form of memories within the first data handling node 500 and
the hash server 700.

In the example scenarios described above, the “first” data
handling node performs verification of received data. How-
ever, it is not necessary that all nodes in a data distribution
path perform such verification of received data. One or more
of the intermediate nodes situated anywhere between the
source node(s) and the last data receiving node(s) in the path
may thus refrain from performing the verification and may
just generate a new hash tag from the received one and send
the new hash tag to the hash server for registration. Thereby,
any subsequent node in the path receiving distributed data is
enabled to perform the verification of data, e.g. in accordance
with the above description of actions by the “first” data han-
dling node.

An exemplary procedure performed by a data handling
node, for enabling verification of data in a data distribution
network with multiple data handling nodes forming a distri-
bution path of a network topology, will now be described with
reference to the flow chart in FIG. 8. The data handling node
in this procedure may basically act as the data handling node
302 in FIG. 3. A first action 800 illustrates that the data
handling node receives, from a preceding data handling node
in the distribution path, distributed data and a hash tag gen-
erated by the preceding data handling node. If the preceding
data handling node is a source node having generated and
distributed source data, the received hash tag has been gen-
erated based on the generated source data to tie the hash tag to
the source data.

The data handling node then generates new data based on
the received distributed data, and possibly also based on
locally generated source data, in a following action 802, e.g.
just as described for node 302 above. Another action 804
illustrates that the data handling node also generates a new
hash tag based on the received hash tag. In this example, the
data handling node refrains from performing verification of
the received data and is content with generating the new hash
tag to enable verification further down the path.

In a further action 806, the data handling node delivers the
generated new data and new hash tag to a subsequent data
handling node in the distribution path. The data handling node
also sends the new hash tag to a hash server for registration, in
a final shown action 808. Thereby, the subsequent data han-
dling node, and possibly further subsequent data handling
nodes down the path, is/are enabled to verify the delivered
new data based on tag information from the hash server,
which tag information indicates whether the delivered new
hash tag corresponds to a valid hash tag calculated by apply-
ing a predefined hash algorithm on at least one previous hash
tag generated by at least one preceding data handling node
and registered in the hash server. In order to accomplish this,
the subsequent data handling node(s) is/are able to act as
described in connection with any of FIGS. 2-5 above.

An example of how a data handling node may be config-
ured to accomplish the above-described embodiments is
illustrated by the block diagram in FIG. 9. The data handling
node 900 is configured to enable verification of data in a data
distribution network with multiple data handling nodes form-
ing a distribution path of a network topology, e.g. according to
the actions and features described above for FIG. 8. The data

US 9,432,384 B2

21

handling node 900 will now be described in terms of a pos-
sible example of employing the solution. In this example, the
data handling node 900 is connected to a preceding data
handling node 902 from which it receives distributed data,
and to a subsequent data handling node 904 to which it sends
new data. The shown nodes 900-904 thus form at least a part
of the data distribution path.

The data handling node 900 comprises a receiving unit
900qa adapted to receive, from the preceding data handling
node 902 in the distribution path, distributed data D2 and a
hash tag H2 generated by the preceding data handling node.
The references D2 and H2 are used here to indicate how this
example may correspond to the example illustrated in FIG. 3,
more specifically the behavior of the node 302 therein. The
data handling node 900 further comprises a first generating
unit 9005 adapted to generate new data D3 based on the
received distributed data D2, and a second generating unit
900c¢ adapted to generate a new hash tag H3 based on the
received hash tag H2.

The data handling node 900 also comprises a sending unit
9004 adapted to send the new data D3 and the new hash tag
H3 to the subsequent data handling node 904 in the data
distribution path. The second generating unit 900c¢ is further
adapted to send the new hash tag H3 to a hash server 906 for
registration. Thereby, the subsequent data handling node 904
is enabled to verify the delivered new data D3 based on tag
information from the hash server, said tag information indi-
cating whether the delivered new hash tag H3 corresponds to
a valid hash tag calculated by applying a predefined hash
algorithm on at least one previous hash tag generated by at
least one preceding data handling node and registered in the
hash server.

In a possible embodiment, the sending unit 9004 may be
further adapted to calculate an authentication value at least
based on the new hash tag and a key known to the data
handling node, and to deliver the new authentication value to
the subsequent data handling node 904, thereby enabling the
subsequent data handling node to authenticate the new hash
tag by using the new authentication value. This feature was
also described above in connection with actions 3:7, 3:9, 402
and 416 in FIGS. 3 and 4, respectively.

While the solution has been described with reference to
specific examples of embodiments, the description is gener-
ally only intended to illustrate the inventive concept and
should not be taken as limiting the scope of the solution. For
example, the terms “source data”, “data handling node”,
“data distribution path”, “hash server”, “hash tag” and
“authentication value” have been used throughout this
description, although any other corresponding entities, func-
tions, and/or parameters could also be used having the fea-
tures and characteristics described here. The solution is
defined by the appended claims.

The invention claimed is:

1. A method performed by a first data handling node for
verifying data in a data distribution network with multiple
data handling nodes forming a distribution path in a network
topology, the method comprising:

receiving, from a second data handling node in the data

distribution network, distributed data and a hash tag
generated based on at least one previous hash tag
received from at least one preceding third data handling
node in the distribution path, the at least one third data
handling node having delivered data to the second data
handling node, wherein the received distributed data has
been generated by the second data handling node based
on the data delivered by the at least one third data han-
dling node, wherein the received distributed data is

10

15

20

25

30

35

40

45

50

55

22

dependent on source data generated by at least one
source node in the distribution path, and wherein said
received distributed data and said hash tags are directly
or indirectly based on the source data,

obtaining tag information from a hash server which tag
information is used for verification of the received hash
tag, wherein said at least one previous hash tag has been
registered in the hash server, and

verifying the received distributed data based on the tag
information from the hash server, said tag information
indicating whether the hash tag received from the second
data handling node corresponds to a valid hash tag cal-
culated by applying a predefined hash algorithm on the
at least one previous hash tag registered in the hash
server.

2. The method according to claim 1, wherein an authenti-
cation value is received from the second data handling node,
wherein the authentication value has been calculated by the
second data handling node based on the hash tag received by
the first data handling node and a key to the second data
handling node, and wherein the first data handling node uses
the authentication value to authenticate the received hash tag.

3. The method according to claim 2, wherein the authenti-
cation value is further based on the received distributed data.

4. The method according to claim 1, wherein the obtained
tag information comprises the registered at least one previous
hash tag, and the first data handling node calculates the valid
hash tag by applying the predefined hash algorithm on the
registered at least one previous hash tag comprised in the
obtained tag information.

5. The method according to claim 1, wherein the obtained
tag information comprises the valid hash tag being calculated
by the hash server by using the predefined hash algorithm,
and the first data handling node compares the valid hash tag
with the hash tag received from the second data handling
node.

6. The method according to claim 1, wherein the obtained
tag information comprises a confirmation that the hash tag
received from the second data handling node corresponds to
the valid hash tag being calculated by the hash server by using
the predefined hash algorithm.

7. A first data handling node configured to verify datain a
data distribution network with multiple data handling nodes
forming a distribution path in a network topology, the first
data handling node comprising:

a receiving unit adapted to receive, from a second data
handling node in the data distribution network, distrib-
uted data and a hash tag generated based on at least one
previous hash tag received from at least one preceding
third data handling node in the distribution path, the at
least one third data handling node having delivered data
to the second data handling node, wherein the received
distributed data has been generated by the second data
handling node based on the data delivered by the at least
one third data handling node, wherein the received dis-
tributed data is dependent on source data generated by at
least one source node in the distribution path, and
wherein said received distributed data and said hash tags
are directly or indirectly based on the source data,

an obtaining unit adapted to obtain tag information from a
hash server which tag information is used for verifica-
tion of the received hash tag, wherein said at least one
previous hash tag has been registered in the hash server,
and

a verifying unit adapted to verify the received distributed
data based on the tag information from the hash server,
said tag information indicating whether the hash tag

US 9,432,384 B2

23

received from the second data handling node corre-
sponds to a valid hash tag calculated by applying a
predefined hash algorithm on the at least one previous
hash tag registered in the hash server.

8. A computer program comprising computer readable
code which, when run on a data handling node, which com-
prising a non-transitory computer readable medium, causes
the data handling node to receive, from a second data han-
dling node in the data distribution network, distributed data
and a hash tag generated based on at least one previous hash
tag received from at least one preceding third data handling
node in the distribution path, the at least one third data han-
dling node having delivered data to the second data handling
node, wherein the received distributed data has been gener-
ated by the second data handling node based on the data
delivered by the at least one third data handling node, wherein
the received distributed data is dependent on source data
generated by at least one source node in the distribution path,
and wherein said received distributed data and said hash tags
are directly or indirectly based on the source data;

obtain tag information from a hash server which tag infor-

mation is used for verification of the received hash tag,
wherein said at least one previous hash tag has been
registered in the hash server; and

verify the received distributed data based on the tag infor-

mation from the hash server, said tag information indi-
cating whether the hash tag received from the second
data handling node corresponds to a valid hash tag cal-
culated by applying a predefined hash algorithm on the
at least one previous hash tag registered in the hash
server.

9. A computer program product comprising a non-transi-
tory computer readable medium, and a computer program,
wherein the computer program is stored on the computer
readable medium, and wherein the computer program com-
prises computer readable code which, when run on a data
handling node, causes the data handling node to

receive, from a second data handling node in the data

distribution network, distributed data and a hash tag
generated based on at least one previous hash tag
received from at least one preceding third data handling
node in the distribution path, the at least one third data
handling node having delivered data to the second data
handling node, wherein the received distributed data has
been generated by the second data handling node based
on the data delivered by the at least one third data han-
dling node, wherein the received distributed data is
dependent on source data generated by at least one
source node in the distribution path, and wherein said
received distributed data and said hash tags are directly
or indirectly based on the source data;

obtain tag information from a hash server which tag infor-

mation is used for verification of the received hash tag,
wherein said at least one previous hash tag has been
registered in the hash server; and

verify the received distributed data based on the tag infor-

mation from the hash server, said tag information indi-
cating whether the hash tag received from the second
data handling node corresponds to a valid hash tag cal-
culated by applying a predefined hash algorithm on the
at least one previous hash tag registered in the hash
server.

10. A method performed by a hash server for enabling
verification of data in a data distribution network with mul-
tiple data handling nodes forming a data distribution path of a
network topology, the method comprising:

10

15

20

25

30

40

45

55

60

65

24

receiving hash tags for registration, sent from at least some
of the data handling nodes, said hash tags comprising a
source hash tag originating from a source node having
generated source data, and consecutive hash tags origi-
nating from succeeding data handling nodes situated
after the source node in the distribution path, wherein
each ofthe consecutive hash tags has been generated by
a corresponding data handling node by applying a pre-
defined hash algorithm on at least a hash tag received
from an immediately preceding node in the distribution
path,

receiving a request for tag information from a requesting
data handling node of the data handling nodes, wherein
the requesting data handling node has received data and
ahash tag from an immediately preceding data handling
node in the distribution path,

determining the tag information based on at least one of the
hash tags originating from preceding data handling
nodes situated before the requesting data handling node
in the distribution path according to the determined net-
work topology, and

returning the determined tag information to the requesting
data handling node for enabling the requesting data han-
dling node to use the tag information to verify the
received data.

11. The method according to claim 10, wherein the
returned tag information comprises at least one of the hash
tags originating from the preceding data handling nodes, thus
enabling the requesting data handling node to perform veri-
fication by calculating a valid hash tag by applying the pre-
defined hash algorithm on the at least one hash tag originating
from the preceding data handling nodes, and comparing the
valid hash tag with the hash tag received by the requesting
data handling node.

12. The method according to claim 10, wherein the
returned tag information comprises a valid hash tag calcu-
lated by the hash server by using the predefined hash algo-
rithm, thus enabling the requesting data handling node to
perform verification by comparing the valid hash tag with the
hash tag received by the requesting data handling node.

13. The method according to claim 10, wherein the
returned tag information comprises an indication whether the
hash tag received by the requesting data handling node cor-
responds to the valid hash tag being calculated by the hash
server by using the predefined hash algorithm.

14. A hash server configured for enabling verification of
data in a data distribution network with multiple data han-
dling nodes forming a data distribution path of a network
topology, the hash server comprising:

a first receiving unit adapted to receive hash tags for reg-
istration from at least some of the data handling nodes,
said hash tags comprising a source hash tag originating
from a source node having generated source data, and
consecutive hash tags originating from succeeding data
handling nodes situated after the source node in the
distribution path, wherein each of the consecutive hash
tags has been generated by a corresponding data han-
dling node by applying a predefined hash algorithm on at
least a hash tag received from an immediately preceding
node in the distribution path,

a second receiving unit adapted to receive a request for tag
information from a requesting data handling node of'the
data handling nodes, wherein the requesting data han-
dling node has received data and a hash tag from an
immediately preceding data handling node in the distri-
bution path, and

US 9,432,384 B2

25

alogic unit adapted to determine the tag information based
on at least one of the hash tags originating from preced-
ing data handling nodes situated before the requesting
data handling node in the distribution path according to
the determined network topology,

wherein the second receiving unit is further adapted to

return the determined tag information to the requesting
datahandling node, thereby enabling the requesting data
handling node to use the tag information to verify the
received data.

15. A method performed by a data handling node for
enabling verification of data in a data distribution network
with multiple data handling nodes forming a distribution path
of a network topology, the method comprising:

receiving from a preceding data handling node in the dis-

tribution path, distributed data and a hash tag generated
by the preceding data handling node,

generating new data based on the received distributed data,

generating a new hash tag based on at least the received

hash tag,

delivering the new data and the new hash tag to a subse-

quent data handling node, and

sending the new hash tag to a hash server for registration

for enabling the subsequent data handling node to verify
the delivered new data based on tag information from the
hash server, said tag information indicating whether the
delivered new hash tag corresponds to a valid hash tag
calculated by applying a predefined hash algorithm on at

5

15

20

25

26

least one previous hash tag generated by at least one
preceding data handling node and registered in the hash
server.

16. A data handling node configured to enable verification
of data in a data distribution network with multiple data
handling nodes forming a distribution path of a network
topology, the data handling node comprising:

a receiving unit adapted to receive, from a preceding data
handling node in the distribution path, distributed data
and a hash tag generated by the preceding data handling
node,

a first generating unit adapted to generate new data based
on the received distributed data,

a second generating unit adapted to generate a new hash tag
based on at least the received hash tag, and

a sending unit adapted to send the new data and the new
hash tag to a subsequent data handling node,

wherein the second generating unit is further adapted to
send the new hash tag to a hash server for registration for
enabling the subsequent data handling node to verify the
delivered new data based on tag information from the
hash server, said tag information indicating whether the
delivered new hash tag corresponds to a valid hash tag
calculated by applying a predefined hash algorithm on at
least one previous hash tag generated by at least one
preceding data handling node and registered in the hash
server.

